




session with and without our interleaving
architecture.

Perhaps radical, and closer to pre-Internet tech-
nologies (such as FidoNet) than current-day broad-
band networking technologies, we believe that such
an approach has practical appeal for the “other four
billion” users of the Internet. Furthermore, while this
article is focused on using POTS to-modem dialup
connections to circumvent extremely low bandwidth
Internet connections in the developing world, the
crux of our proposal has generic appeal in the devel-
oping world. Countries like Pakistan have seen a
phenomenal growth in Telecom, resulting in cheaper

and better communication infra-
structure within the country—in-
cluding deployment of high-
bandwidth Wireless Local Loop
(WLL) and WiMAX—while
Internet connectivity and band-
width remains scarce. Our pro-
posed architecture, at an abstract
level, provides a mechanism for
multiplexing the scarce and ex-
pensive international Internet
bandwidth over higher band-
width peer-to-peer connections
within a developing country.

Key to the practicality of our
approach is a realization that it is
not always possible or desirable
to make a direct dialup connec-
tion between the “client” and

“server.” For instance, a Web server may not be ac-
cessible over dialup; the server may not support a
dial-in facility or may be located in a different coun-
try, requiring an expensive international phone call
to establish a dialup connection. Even when the
server is accessible over dialup, it would have a lim-
ited number of modems and a ªnite capacity for
handling dial-in connections.

Our system derives its practicality from combining
the P2P dialup-underlay with a data transfer archi-
tecture that enables dialup clients to cache and col-
laboratively share downloaded content—a peer-to-
peer (P2P) ªle-sharing systems (Cohen, 2003) (albeit
with additional mechanism for direct P2P dialup
connections). Our P2P data transfer architecture is
derived from and compatible with the hugely popu-
lar BitTorrent peer-to-peer ªle-sharing system (Co-
hen, 2003). We chose BitTorrent over other P2P ªle-
sharing systems like Gnutella, Kazaa, eDonkey, etc.,
due to its download performance and robust incen-
tive mechanism (Qiu, 2004; Pouwelse, 2004; Saroiu,
2002). We call our system DitTorrent (Dialup
BitTorrent).

The DitTorrent module presents an interface simi-
lar to BitTorrent and is designed to be compatible
with existing BitTorrent clients and trackers. Addi-
tionally, DitTorrent can establish direct point-to-point
dialup connections to download content at modem-
speed when such a connection can reduce the over-
all download time of a requested ªle.

Using DitTorrent as a mechanism for data trans-

Volume 5, Number 1, Spring 2009 33

SAIF, CHUDHARY, BUTT, BUTT, MURTAZA

Figure 1. Our system interleaves low-bandwidth Internet connections with
modem speed P2P dialup connections.

Figure 2. The difference in the data downloaded with
and without our interleaving architecture.



fer, we implement a session layer that enables
ofºine Web access over DitTorrent’s modem-speed
dialup connections. Ofºine Internet access in our
system is enabled by several components working in
concert: (1) browser plug-in that employs the P2P
data transfer layer, when possible, to download re-
quested content over DitTorrent (rather than using a
TCP/IP connection over the Internet between the cli-
ent and the Web server); (2) P2P and Web bridge
module that converts Web pages into DitTorrent
packages to enable ofºine download; (3) a pre-
fetching proxy that mitigates the disruption of on-
line access when interleaving ISP and P2P dialup
connections; and (4) suspend-resume download-
manager provides a common caching and schedul-
ing mechanism to maintain download sessions
across interleaving of ISP (Internet) and peer-to-peer
dialup connections. Figure 3 sketches the high-level
architecture of our system.

In this article, we describe the design and imple-
mentation of our system and present detailed analy-
sis of data transfer over the P2P dialup-underlay.
While derived from BitTorrent, the P2P dialup mode
of DitTorrent faces a number of unique challenges.
Above all, while BitTorrent is designed around the
concept of parallel downloads of multiple ªle
chunks from different peers, DitTorrent is “sequen-
tial”; a DitTorrent client can connect with only one
peer over a P2P dialup connection. Likewise, calling
and connecting other peers introduces the addi-
tional overhead of 10–30 sec. for modem-to-
modem handshake.

The rest of the article describes our architecture
and solutions to these challenges and is organized
as follows: Section 2 gives an overview of the sys-
tem architecture and describes the ofºine access
model of our system; Section 3 describes the design
and evaluation of our extension to BitTorrent, called
DitTorrent, which provides the mechanism for ofºine
data exchange; Section 4 outlines our implementa-
tion; and Section 5 presents related and future
work.

2. System Overview
Our system is based on a modular architecture dia-
grammed in Figure 3. The browser plug-in drives the
entire system: a user clicks on a URL in his browser;
the URL is shipped to the bridge module, which
passes this to the DitTorrent module; the DitTorrent
module looks up the requested ªle on the P2P net-
work and may start downloading the ªle in the
ofºine mode. If the ªle does not exist on the P2P
network, the P2P network responds with a failure
code, causing the browser to download the ªle over
the Internet.

Files that are downloaded over the Internet are
turned into DitTorrent packages by the bridge mod-
ule, such that subsequent download requests by
other hosts may be served ofºine by the DitTorrent
P2P network. Note that the DitTorrent package typi-
cally includes more ªles than just the one requested
by the user; ªles that are linked by the current page
are downloaded by the pre-fetching proxy and are
included in the DitTorrent package.

34 Information Technologies and International Development

A PEER-TO-PEER INTERNET FOR THE DEVELOPING WORLD

Figure 3. Modules of the software installed at a client.



The suspend/resume module provides a common
session layer, which permits blocks of a ªle to be
downloaded and checked in parallel by different
data transfer mechanisms (ofºine P2P and Internet
in our case).

Below we describe these components in detail.

2.1 Data-oriented Transfer
The internal interfacing between the Web browser
and the P2P client embodies a data-oriented archi-
tecture; a user chooses a ªle he wishes to down-
load, while the system automatically explores
alternative mechanisms to download the ªle in the
minimum possible time (Tolia, 2006).

To achieve this, the ªrst critical piece is the bridge
module, which bridges Web browsing and P2P
ofºine ªle-download. In order to download a Web
page on the P2P network, the bridge module must
ªrst translate the requested ªle to a .torrent ªle
which may be looked up on the DitTorrent network.
To achieve this, the browser plug-in passes the URL
of the requested ªle to the bridge module, which
looks-up the requested URL on an indexing server1

to download the corresponding .torrent ªle. The
bridge module then passes the ªle to the DitTorrent
module which contacts the tracker and, subse-
quently, its swarm to download the ªle in ofºine
mode at modem speed.

However, the role of the bridge module is more
involved when it cannot ªnd the requested URL on
the DitTorrent network. In this case, the bridge mod-
ule waits for the user to download the ªle over the
Internet, and assembles a DitTorrent package to be
put on the P2P network for subsequent (ofºine)
downloads by other users.

Before describing the operation of packaging
Web pages as DitTorrent packages, it is important to
realize that making a single Web page accessible
over DitTorrent is typically not feasible. This is be-
cause the bandwidth improvement resulting from a
transition from a slow-speed Internet connection to
a 32kb/sec. P2P modem-to-modem connection is
not free. In fact, each such transition incurs an
overhead of close to 30 seconds for negotiating the
new modem connection. Of course, each subse-
quent transition between two P2P dialup connec-
tions, as well as the transition back to the Internet

connection, also incurs the same overhead of mo-
dem-handshake. A typical Web page on the
Internet, on the other hand, is less than 40KB in
size, making it infeasible to incur the overhead of
modem-to-modem handshake. To illustrate the
point, Figure 4 depicts suitable ISP-P2P interleaving
points with varying Internet bandwidth and the
number of dialup connections necessary to down-
load a ªle. These measurements, derived from tak-
ing an average of 100 readings of different user
traces, illustrate that, for smaller ªles, the overhead
of modem-to-modem negotiation outweighs the
time saved in downloading the ªle at modem
speed. With a moderately low-bandwidth dialup
Internet connection of 15kb/sec., and between
two to four average modem connections (discon-
nection and reconnection to the Internet, as well as
dialup connections between peers), interleaving of
ISP-P2P typically becomes feasible for ªles larger
than 50KB.

Another important consideration for off-line Web
access is an understanding of user browsing pat-
terns. Typically, users do not access a single Web
page on a Web site.

Recent studies (Hu, 2007) show that, on average,
a user clicks through 10–30 Web pages on a Web
site. Therefore, in order to afford a smooth ofºine
browsing experience on the P2P network, DitTorrent
packages must include several pages on a Web site.
Given the distribution of crawled pages by users on
a Web site (Hu, 2007), the challenge is to balance a
smooth browsing experience for a user who may
click-through several pages, while minimizing the
cost (of downloading a large package) for users
who browse fewer pages. Figure 5 shows the per-
centage of users who get redundant Web pages
with respect to the pages included in a single
DitTorrent package.2 The results are derived by tak-
ing an average of user traces according to the distri-
bution reported in Hu (2007).

With this background, we assemble a DitTorrent
package (for ofºine browsing) as follows. If the
bridge module cannot ªnd a page on the DitTorrent
P2P network, it waits for the user to ªnish her
browsing session. If the number of pages browsed
by the user (in a single session) exceeds a pre-
conªgured threshold, it simply puts all these pages

Volume 5, Number 1, Spring 2009 35

SAIF, CHUDHARY, BUTT, BUTT, MURTAZA

1. In DitTorrent, we use the requested URL for indexing and look-up of the ªle on a Torrent indexing server.
2. User click-through distribution is derived from a recent study by Hu (2007).



in a single DitTorrent package and publishes the
package for others to download. However, if the
user visits fewer pages, the bridge module requests
the pre-fetching proxy to download an additional
k level of egress links (k is conªgurable), such that
the package is also useful for a user who exhibits
“average” browsing patterns.

We have currently set the
package size to be 40 pages,
which corresponds to the 50 per-
centile mark in Hu (2007). With
40 pages, 50% of the users will
have a smooth browsing experi-
ence by downloading just a sin-
gle DitTorrent package.

Web pages in the cache are
automatically removed according
to the source caching policy
(time-to-live). If the pre-allocated
cache ªlls up over time, ªles with
the oldest time stamps are re-
moved ªrst.

2.2 Interleaving of Online-
Ofºine Connection
Web browsing mandates that

P2P-ISP connections are interleaved without mani-
festly disrupting “normal browsing” of the Web.
When a user requests to download a ªle, say, http://
ocw.mit.edu, over the Internet (via an ISP), the
browser plug-in asks the bridge module to ªnd the
ªle on DitTorrent. If found, it then requests
DitTorrent to download the requested ªle. DitTorrent

36 Information Technologies and International Development

A PEER-TO-PEER INTERNET FOR THE DEVELOPING WORLD

Figure 4. Feasible interleaving points between P2P and Internet.

Figure 5. Percentage of users that download “extra” pages with respect to
the package size.



establishes P2P dialup connection with a peer that
has the requested URL package to download the ªle
in ofºine mode at maximum modem-speed.

However, subsequently, a user may click her way
to a page that is not part of a DitTorrent package
downloaded by DitTorrent over the P2P network.
Therefore, the browser plug-in keeps track of user
clicks in the DitTorrent package and switches over to
ISP-mode if the user subsequently clicks her way to
a level beyond which nothing is locally present. The
browser may be conªgured to switch back to the
ISP-mode even before that stage, say, at k-1 levels,
to make the browsing experience smoother.

Figure 6 shows a timeline of P2P and Web access
interleaving collected from a user trace for the
above scenario. A switchover between the slow
Internet connection and modem-speed DitTorrent is
manifested as the change in the gradient of the line.
The dotted lines represent download times without
ISP-P2P interleaving.

2.3 Suspend-resume Session Layer
In order to support downloads from both the
Internet (via ISP) and DitTorrent’s ofºine mode, our
system includes a common suspend-resume session
layer. The common suspend-resume session layer
permits different download mechanisms, such as
DitTorrent and Web browser, to create a ªle handle
(encoded as a unique File ID, FID) and put in differ-
ent blocks of a ªle that are pieced together to gen-
erate the complete ªle. The FID is a (MD5) hash of

the ªle contents, permitting both
unique identiªcation of ªle con-
tents for subsequent lookups and
veriªcation of the completeness
and integrity of the downloaded
contents. Different download
mechanisms, such as P2P
DitTorrent and client-server HTTP
connections, invoke the hole in-
terface of the session layer to ªnd
chunks of a ªle currently not
downloaded. The hole method,
when invoked with an FID, re-
turns a pair of offsets that indi-
cate a range of bytes in the ªle,
or a hole, currently not stored in
the cache. Successive invocations
of the hole interface return non-
overlapping ªle chunks not stored

in the cache; the browser plug-in and DitTorrent
calling the hole interface are assigned non-overlap-
ping chunks of a ªle to download either in parallel
(online mode) or sequentially (when interleaving on-
line and ofºine modes). In our current implementa-
tion, we have ªxed the hole size to be the same as
a BitTorrent block (128kB), simplifying the
interoperation of the session layer and our P2P
DitTorrent client.

2.4 DitTorrent Peer-to-Peer Client
The centerpiece of our architecture is the DitTorrent
P2P client (Saif, 2007). As mentioned earlier, our ar-
chitecture derives its practicality by enabling clients
(peers) to share downloaded data, minimizing the
need for direct dialup connections between clients
and servers. Our P2P data transfer architecture is de-
rived from and compatible with the hugely popular
BitTorrent peer-to-peer ªle-sharing system (Cohen,
2003). The key attraction of BitTorrent for us is its
practical incentive-driven data-sharing model; in-
stead of assuming a volunteer-driven model like
FidoNet, where users are expected to voluntarily call
one another to copy data between various nodes,
our system is based on a more practical incentive-
driven, tit-for-tat data-sharing model of BitTorrent
(Cohen, 2003). In our model, ªles are divided into
smaller chunks, as in BitTorrent, that are virally repli-
cated in the network, based on opportunistic peer
connections; node A may let node B download a

Volume 5, Number 1, Spring 2009 37

SAIF, CHUDHARY, BUTT, BUTT, MURTAZA

Figure 6. Interleaving of an Internet connection with a point-to-point con-
nection for fetching pages not present in a DitTorrent package.



chunk of a ªle as long as node B can offer another
chunk in return that node A wishes to download.

However, this model also raises a number of in-
teresting challenges. For one, download of a ªle in
this model does not involve a single switchover from
the online Internet world to a point-to-point dialup
connection, but several shorter connections with dif-
ferent peers in the same vein as BitTorrent. There-
fore, with the 30-second penalty of a modem-to-
modem handshake, it is important to minimize the
number of connections needed to download the
entire contents of the ªle. Moreover, given the
point-to-point nature of the operation over the
dialup-underlay, clients must somehow discover
other ofºine clients and establish peer-to-peer con-
nections to exchange chunks of a ªle. The point-to-
point nature of the dialup-underlay also introduces
another interesting idiosyncrasy: if two peers are
connected to each other, no other peer can connect
to them. Hence, once a point-to-point connection is
established, there is no mechanism for a client to
opportunistically discover a better peer, until it
hangs up and connects to another client. Further-
more, BitTorrent’s rate-based, tit-for-tat data sharing
model—in which a host uploads data to a peer for
only as long as it can download data from that peer
at a similar data rate—becomes superºuous in a
point-to-point dialup connection. This is because up-
load and download rates in a standard P2P dialup
connection are symmetric (e.g., 32kb/s upload and
download for typical v.90 modems). Section 3 dis-
cusses the challenges and possible solutions in
detail.

3. Ofºine Peer-to-Peer Data
Transfer
In this section, we describe the design, implementa-
tion, and evaluation of DitTorrent.

3.1 Evaluation Methodology
To understand the behavior of DitTorrent, especially
under extreme conditions in the developing world,
we use a simulation-based approach. Even though
we have released our DitTorrent implementation
(Client and Tracker) to a community of users in Paki-
stan, via Sourceforge (DitTorrent, 2007), we chose a
simulation-based evaluation since very little data ex-
ist in terms of traces of real torrents for extremely
low-bandwidth connections. Moreover, our simula-
tor’s controlled environment made it possible to

evaluate aspects of our design that are otherwise
difªcult to infer from tracker logs or by running
moderately sized experiments.

For our evaluation, we have implemented a dis-
crete-event simulator of DitTorrent, which extends
the BitTorrent simulator implemented by Bharambe
(2006). However, while the underlying framework of
our simulator is derived from the simulator de-
scribed in Bharambe, our model of DitTorrent is al-
most diametrically different from the BitTorrent
model he implemented. For instance, the BitTorrent
simulator by Bharambe is designed to simulate par-
allel downloads by a BitTorrent client, while
DitTorrent is limited to point-to-point symmetric up-
load/download between only two hosts. Likewise,
Bharambe’s simulator assumes perfect knowledge of
the location of each block of a ªle, while a
DitTorrent client’s knowledge about the location of
ªle blocks is often imperfect. Similarly, a BitTorrent
client is designed to maximize download bandwidth,
while a DitTorrent client attempts to minimize the
time wasted in negotiating new modem-to-modem
connections.

To capture the idiosyncrasies of DitTorrent’s
(ofºine) operation, we implemented the following
new features in the simulator described in
Bharambe: point-to-point symmetric connections,
call-overhead resulting from modem-to-modem ne-
gotiation, busy tones overhead during “ºash
crowds,” ofºine block-discovery, and greedy peer
selection with different “end-game” modes. Below,
we describe the motivation, implementation, and
evaluation of each of these features in detail.

In our experimental setup, we conªgured our
simulator to use a swarm of 100 nodes (typical
BitTorrent swarm size). Our simulations were run on
a P4 machine 3.2GHz, with 1GB RAM. Our simula-
tion environment was conªgured with the following
parameters:

• In our simulation environment, all the partici-
pating nodes were conªgured with symmetric
download and upload bandwidth, set at 30
Kbps.

• Peers in our simulation were bootstrapped with
a single block, unless otherwise stated in the
experiments described below.

• In our experiments, we measured the perfor-
mance of the system by varying the size of the
ªle to be downloaded, and where speciªcally

38 Information Technologies and International Development

A PEER-TO-PEER INTERNET FOR THE DEVELOPING WORLD



mentioned, the number of initial blocks allo-
cated to each peer.

• Given the point-to-point nature of DitTorrent,
each node was conªgured to only connect
with one other at a time.

• We set the seed leaving probability to 1 in our
experiments; we do not assume that a node
stays in the simulation after completing its
download.

• In the simulations for ofºine block discovery
and ºash-crowds (described below), nodes
were introduced in an ongoing experiment, af-
ter a random delay, to simulate late-entering
nodes.

3.2 Architectural Overview
DitTorrent is designed to be backward compatible
with BitTorrent. Compatibility with BitTorrent has ob-
vious appeal in terms of user adoption, making
DitTorrent a vehicle for using BitTorrent in the devel-
oping world. Above all, DitTorrent derives its incen-
tive-driven, tit-for-tat data-sharing model from
BitTorrent. Furthermore, high-level architectural com-
ponents of DitTorrent are derived from BitTorrent;
ªles are published by advertising a .torrent metaªle;
clients make peer-to-peer connections to opportu-
nistically download, cache, and publish blocks of
ªles; and a tracker acts as a directory service for cli-
ents to discover peers from which blocks of a ªle
may be downloaded. The use of a .torrent ªle and a
tracker for initial peer discovery and bootstrap pro-
vides a basis for compatibility with BitTorrent.
DitTorrent tracker, as well as the DitTorrent .torrent
ªle format, is designed to be backward compatible
with BitTorrent. As a result, existing BitTorrent clients
can interoperate with DitTorrent clients. DitTorrent
clients, however, of course have the additional capa-
bility to establish point-to-point dialup connections
for accelerated download of content.

Before proceeding with the description of
DitTorrent, it is instructive to consider the behavior
of BitTorrent over characteristically low bandwidth
connections in the developing world. Figure 7 plots
the download time of a 10 MB ªle over BitTorrent
by a client connected to the Internet on a slow
dialup connection. The results shown in Figure 7
were reported by the original BitTorrent simulator of
Bharambe et al (Bharambe, 2006), which, most no-
tably, ignores TCP timeouts. Still, the download time

of a ªle goes up sharply as the bandwidth is re-
duced from 15kb/sec. to 5kb/sec. This is because the
number of chokes experienced by the client (snubs
by peers as they ªnd better partners) increases as
the client bandwidth nears 10kb/sec. For compari-
son, in the case when there are 30% low-band-
width hosts in the mix of nodes using BitTorrent, a
client with a 10kb/sec. takes close to 8.5 times
longer than a cable node with a bandwidth of
100kb/sec. for upload and 250 kb/sec. for down-
load. For these low-bandwidth nodes, point-to-point
symmetric dialup connections, at 32kb/sec., can of-
fer a substantial performance improvement. For in-
stance, compared to a 10kb/sec. BitTorrent client
that downloads a 10MB ªle in 2 hours and 21 min-
utes (derived from the experiments shown in Figure
7), a client using a point-to-point 32kb/sec. connec-
tion can download the same ªle in 41.6 minutes
(assuming a single point-to-point connection) for a
performance improvement of close to 70%.

3.3 DitTorrent Tracker-Client Interaction
DitTorrent is designed to interoperate with BitTorrent
in its online mode. However, its ofºine point-to-
point mode requires special support from the
tracker. Importantly, unlike a traditional BitTorrent
tracker that keeps track of currently online hosts, a
DitTorrent tracker must keep track of both ofºine
and online hosts interested in downloading a ªle.
While fundamental to the duality of operation of a
DitTorrent client, this extension requires only a minor
modiªcation to existing BitTorrent trackers. Current
BitTorrent trackers require a client to refresh its regis-
tration periodically by sending announce messages
after an interval number of seconds. A DitTorrent
tracker, instead of deleting the record of a client

Volume 5, Number 1, Spring 2009 39

SAIF, CHUDHARY, BUTT, BUTT, MURTAZA

Figure 7. BitTorrent performance deteriorates sharply
as the client bandwidth drops to 10kb/sec.



that fails to refresh its registration after interval sec-
onds, simply marks the client ofºine and retains its
entry for future lookups from DitTorrent clients.
However, since dialup nodes are prone to frequent
disconnections, our DitTorrent tracker marks a client
ofºine only after the client misses successive peri-
odic announcements.

A DitTorrent tracker distinguishes between
BitTorrent and DitTorrent clients such that the latter
can be given additional information for ofºine oper-
ation. To this end, a DitTorrent tracker accepts an
additional event attribute from a DitTorrent client
during registration; the event param in the URL is
set to “dialup” to indicate that the registering client
is a DitTorrent client. A client-announce with event
param set to dialup may include two additional pa-
rameters to the GET request URL, as described
below.

The key additional parameter in a DitTorrent cli-
ent registration request is a phone number to reach
the client in the ofºine P2P mode. Additionally, a
DitTorrent client can also include a list of time win-
dows that specify times of day during which dialup
connections may be established with the client. A
client can specify the following time windows as
part of its request to the tracker: available_time_
window speciªes the time interval in which the cli-
ent is available for accepting phone calls; query_
time_window speciªes the time interval in which the
client intends to make calls to download the ªle;
and, optionally, a previous_time_window, in case
this request updates existing registration of the cli-
ent. For instance, a client installed on an ofªce com-
puter may advertise a time-window between 8 P.M.
to 7 A.M when phone lines for the ofªce are gener-
ally free. Subsequent DitTorrent clients registering
with the tracker are given contacts of those peers
whose available_time_window overlaps with the
query_time_window of the client (as well as online
clients). The use of time-windows in our system is
reminiscent of “zone mail hour” used by FidoNet
(Jennings, 1984) clients to specify a time-window
for receiving dialup connections.

3.4 DitTorrent Peer-to-Peer Interaction
DitTorrent’s ofºine point-to-point operation is funda-
mentally different from BitTorrent. Where a
BitTorrent client attempts to minimize the download
time of a ªle by opportunistically connecting with
and disconnecting (choking and unchoking) from a

large set of peers (peer swarm) in search of better
download bandwidth, a DitTorrent client must mini-
mize the number of peer connections when down-
loading a ªle. This is because “trying” new peers
in BitTorrent is an almost zero-overhead operation
(an unchoke message sent to the peer over a long-
running TCP connection), while a new dialup con-
nection in DitTorrent incurs a 30-second overhead in
negotiating the dialup connection. To illustrate the
point, consider the simulation results of BitTorrent
shown in Figure 7. The BitTorrent client shown in
Figure 7, with a 10kb/sec. symmetric upload/down-
load bandwidth, makes close to 564 connections
(with rate-based choking period set at 10 sec. and
opportunistic unchoking every 30 sec.) during the
download of a 10 MB ªle. If these were dialup con-
nections, the time spent in negotiating new dialup
connections would equal the actual time spent in
downloading the contents of the ªle (an overhead
of 100%).

Furthermore, given a symmetric upload/down-
load bandwidth in a P2P dialup connection,
DitTorrent’s ofºine operation does not need to in-
clude BitTorrent’s rate-based choking. Instead, a
DitTorrent client (in ofºine mode) should only choke
a peer when the peer can no longer upload newer
blocks needed by the client; peer connections last
for as long as peers can reciprocate each other with
non-overlapping blocks of ªle, while there is no
need for opportunistic unchokes. This approach of
peer-choking, similar to pairwise block-level tit-for-
tat (BLTFT) proposed in Bharambe (2006)—as op-
posed to rate-based, tit-for-tat implemented by
BitTorrent—is a natural ªt in a point-to-point dialup
setup and is implemented by DitTorrent.

However, while disabling opportunistic unchokes
and using BLTFT avoids unnecessary connections in
DitTorrent’s point-to-point mode, the overhead of
negotiating dialup connections must be carefully
managed, especially for smaller ªles. This is because
dialup connections, worth 30 seconds each, incur an
overhead equivalent to exchange a whole block
(128KB) on BitTorrent at 32kb/sec.

3.4.1 Peer-to-Peer Dial-up Overhead
In order to understand the overhead of modem-to-
modem negotiation in DitTorrent, consider the theo-
retical best and worst cases for downloading a ªle
of size N blocks, with a client starting with a single
block of the ªle.

40 Information Technologies and International Development

A PEER-TO-PEER INTERNET FOR THE DEVELOPING WORLD



The theoretical best case, aimed at minimizing
the number of calls required to download a ªle, may
be understood as peer selection policy that exactly
matches peer needs: a client calls only that peer
which has exactly the same number of complemen-
tary blocks. In this case, with BLTFT, the ªrst dialup
connection of a new client with a single initial block
will result in the exchange of one block, making it
two blocks at the client. The next call will result in
two blocks exchanged, making it four blocks at the
client. Likewise, the next call will result in eight
blocks at the client and so on. Therefore, for a ªle
of size N blocks, it will take at least log2N calls to
download all blocks of the ªle. Unfortunately, this
theoretical best case assumes a perfect match of
peer needs on every call made by the client; any

mismatch would result in addi-
tional future calls for either the
caller or the callee.

The theoretical worst case, on
the other hand, may arise in a
scenario in which a client must
make N calls to download a ªle
of N blocks, incurring a modem-
to-modem negotiation overhead
for each block of the ªle.

To come close to the theoreti-
cal best case, our system uses a
simple greedy strategy for peer
selection. In the greedy strategy, a
client grabs the maximum it can
at any point in time, regardless of
whether it is an exact or a
suboptimal match on either side
of perfect-match. Figure 8 com-
pares the performance of this

simple greedy-strategy with the best (Log2N calls)
and worst case (N Calls). The clients in the simula-
tion are bootstrapped with an initial set of one to
ªve random blocks for a swarm size of 100.

However, while a simple greedy strategy per-
forms adequately well on average, we quickly real-
ized the impact of the “last-block-problem” in P2P
systems (Bharambe, 2006). Figure 9 plots the down-
load times from 20 different simulations as we var-
ied the ªle size. The variability in the measured
times for a given ªle size reºects the time for which
different nodes in the swarm may be “stuck” trying
to download the last few blocks of a ªle. BitTorrent
employs two techniques to help nodes that are near
completion to ªnish quickly: (1) End-game mode,
which enables a client close to ªnishing to quickly
search for the last few missing blocks; and (2) Local
Rarest First (LRF), which helps balance the rarity of
different blocks by requiring clients to download the
rarest block ªrst from a connected peer.

In DitTorent, we experimented with analogues of
both of these schemes. In the ªrst implementation,
we mimicked the effect of the end-game mode by
modifying the greedy policy, dubbed greedy-
completor. With this modiªcation, a greedy client fa-
vors those peers that will ªnish the ªle download at
the end of the connection. Intuitively, this scheme is
aimed at enhancing the chances of relative new-
comers to expedite the completion of peers closer
to ªnishing. Conversely, peers relatively early in the

Volume 5, Number 1, Spring 2009 41

SAIF, CHUDHARY, BUTT, BUTT, MURTAZA

Figure 8. Comparison of the modem-to-modem negotiation overhead of
the greedy peer selection with the best and worst cases.

Figure 9. Variability in ªle download times due to the
last block problem in the simple greedy strategy.



race get blocks from those near completion, causing
rare blocks (typically stored at seeds or near-seeds)
to be transferred from the old to the new. Figure
10, like Figure 9, plots download times across 20
simulations, illustrating the reduction in the variabil-
ity of measured times for greedy-completor.

Our second strategy to combat the last-block
problem is inspired by BitTorrent’s LRF strategy. How-
ever, LRF’s rationale is that a peer should grab the
rarest block ªrst from a peer in case it is choked pre-
maturely. This has little impact in DitTorrent since a
P2P connection in DitTorrent lasts as long as peers
have something to exchange; there is no danger of
unanticipated choking due to a dip in the client’s
upload bandwidth. Instead, we implement Global
Rarest First (GRF) strategy in DitTorrent. Unlike LRF,
in which a client grabs the rarest blocks stored at a
peer, a client using GRF chooses a peer that has the

rarest blocks stored at it. Viewed differently, LRF is a
block prioritization strategy, while GRF is a peer se-
lection policy; a client using GRF prioritizes its con-
nections with peers according to the rarity of blocks
stored at them. For instance, in our greedy strategy,
a client that could exchange three blocks each with
two of its peers will ªrst call that peer which can of-
fer comparatively rarer blocks.

Figure 11 shows that our greedy peer selection
policy with GRF performs better than greedy-
completor in terms of the variability in download
times across 20 simulations.

3.4.2 Flash Crowds in DitTorrent
As mentioned earlier, the point-to-point nature of
DitTorrent’s ofºine operation precludes multiple peer
connections. In fact, a client calling a peer that is al-
ready connected to another peer would get a
“busy-tone.” Unfortunately, however, this operation
of checking the availability of a peer incurs an extra
overhead of close to 10 seconds (time to call the
number and receive a busy tone). This overhead be-
comes particularly signiªcant during the so-called
ºash crowds (Bharambe, 2006) in which many cli-
ents want to quickly download a newly accessible
ªle. In a point-to-point setup, ºash crowds result in
a large fraction of the call attempts failing with
busy-tones.

Intuitively, this may be addressed by introducing
a wait-time between calls during times of conges-
tion. Our implementation combats ºash crowds by
using two simple heuristics: (1) Each client must
wait for n seconds before trying again if it ªnds all
of its potential peers (peers with non-overlapping
chunks) busy; and (2) A client must wait for n sec-
onds between successive calls. The former intro-
duces a back-off period in the times of congestion,
while the latter is aimed at giving clients a chance to
receive calls in between making calls.

In our simulation experiments, we found that the
back-off time was more useful than the introduction
of wait time between calls. For instance, Figure 12
shows the ªle download time with respect to the
back-off time and a ªxed time to wait-between-calls
(WBC). The performance of the system (ªle down-
load time) improves signiªcantly by introducing a
back-off time, but quickly tapers off at around eight
seconds for a setup in which the average call time is
three minutes. It is worth highlighting, though, that
while we achieved best performance with WBC set

42 Information Technologies and International Development

A PEER-TO-PEER INTERNET FOR THE DEVELOPING WORLD

Figure 10. Variability in the ªle download times due to
the last block problem in the greedy-completor strat-
egy.

Figure 11. Variability in ªle download times due to the
last block problem with Global-Rarest-First peer priori-
tization.



to a nominal one second, a WBC of zero (no wait
between calls) makes the performance exponentially
worse. A WBC of, say, 25 seconds, however, makes
the performance more variable, without resulting in
any real performance advantage. We are currently
exploring an adaptive policy for WBC such that the
value of WBC is dynamically adjusted according to
the congestion in the network. For instance, the
value of WBC may be increased multiplicatively by a
constant factor upon a failed call, and reduced cor-
respondingly if a call succeeds.

3.4.3 Ofºine Block Discovery
In BitTorrent, a client starts the download of a ªle by
acquiring (from the tracker) a list of peers that have
chunks of the ªle. The client then connects with the
set of 80–100 peers returned by the tracker (its peer
swarm) and acquires from each a list of blocks cur-
rently stored at the peer (called “peer handshake”
in BitTorrent). Subsequently, peers in a swarm keep
each other informed about newly acquired blocks by
sending “have” messages. All this mechanism of
discovering ªle blocks rests on a BitTorrent client’s
ability to talk to multiple peers in parallel. Hence,
this cannot be directly mapped to our P2P dialup ar-
chitecture.

We implement block discovery in DitTorrent’s
ofºine mode by using a scheme inspired by distrib-
uted gossip protocols (Ganesh, 2003). In this
scheme, when a client calls a peer, it not only ex-
changes complementary ªle blocks, the peers also
exchange lists of blocks discovered at hosts that pre-

viously connected to the clients
(including their own). The aim is
to virally spread the knowledge
about the blocks stored at various
hosts, while minimizing the num-
ber of connections required to
spread the information. For in-
stance, consider a DitTorrent cli-
ent A that has previously
connected with (either as a caller
or callee) nodes B and C, each
with the following sets of blocks:
B{0,5,3}, C{1,2,9}. With our gos-
sip-based approach, when a
newly arrived client D (with zero
current blocks) calls A, it is not
only given a single block of ªle
(c.f. DitTorrent bootstrap mode),

it is also given lists of blocks stored at B and C (in-
cluding the blocks exchanged in their connection
with A). Once understood like this, it quickly be-
comes apparent that a client in this scheme will
greatly beneªt by initially calling nodes that have
been around for a long time (i.e., nearing
completion).

Given this background, block discovery in
DitTorrent’s ofºine mode works as follows. Newly ar-
rived clients “scrape” the tracker to ªnd out the
percentage of ªle downloaded by each client in its
swarm (as reported by their last update message to
the tracker). Armed with this information, the client
goes into ofºine mode. In the ofºine mode, it ªrst
calls the host that has downloaded the maximum
number of blocks of the ªle. Of course, this could
be a seed node, but a DitTorrent client only calls
non-source seeds since they have acquired a diverse
knowledge while working their way up from a sin-
gle block to the completion of the ªle.

In our implementation, a DitTorrent client initially
calls a ªxed number of peers, three in our current
setup, that have downloaded the maximum fraction
of the ªle. After this initial bootstrap, a client using
ofºine block discovery proceeds in this mode until it
has acquired information about all N blocks of the
ªle. Subsequently, the client simply follows the
greedy scheme when choosing peers to exchange
blocks. Figure 13 compares the performance of
DitTorrent’s gossip-style, ofºine block discovery with
a setup in which a client has perfect knowledge of
its peers as in BitTorrent. The performance of

Volume 5, Number 1, Spring 2009 43

SAIF, CHUDHARY, BUTT, BUTT, MURTAZA

Figure 12. Analysis of overhead due to “busy tones” in ºash crowds.



DitTorrent closely mirrors BitTorrent with its gossip-
style, ofºine block discovery, with the overhead of
block discovery becoming more visible as we in-
crease the number of ªle blocks (that must be
discovered).

3.4.4 Budget-based Download
Often in our work, we were asked about the eco-
nomic feasibility of our approach. This concern was
raised because the Internet is typically a ºat-rate ser-
vice, while phone calls are charged by the minute.
First, it is worth noting that POTS is increasingly be-
coming like the Internet in terms of service charges;
it is typical for telephone service providers to offer
ºat-rate regional or national plans. In case of such a
ºat-rate subscription, our approach offers “near-
broadband” speed for no additional cost as long as
calls are localized in the ºat-rate region. DitTorrent
clients can be conªgured to only call those peers
that are within their calling “region” by, for in-
stance, matching the ISP calling code with available
peers. Importantly, given the P2P nature of our data
transfer scheme, the burden of making a phone call
is shared between peers; a peer downloads data
both as a caller and a callee.

Initially, we considered providing an interface to
the users to limit the number of calls to be made by
the client when downloading the ªle. The intuition
was that after the client has made the speciªed

number of calls, it goes into a
passive mode in which it simply
waits to be called to acquire more
ªle blocks. If a client fails to
download the ªle in a speciªed
time, it prompts the user to in-
crease the call budget. In some
sense, this scheme exposes a
tradeoff of calling cost vs. timely
download to the user. It is worth
highlighting that, with the current
download speeds in the develop-
ing world, such an architecture is
still very practical; more often
than not, a user may be happy
with a one-time extra cost to
quickly download an important
ªle, otherwise not possible with
an extremely slow and intermit-
tent Internet connection. How-
ever, we found that limiting the

number of calls this way not only leads to starvation
of peers, it results in an increase in the average
number of calls each client has to make to down-
load a ªle. Figure 14 shows the percentile of nodes
that complete a ªle download as we increase the
call budget. With a call-budget restriction, a 100%
completion rate is achieved for a call-budget that is
slightly worse than the average number of calls
made in a setup without a call-budget (average
number of calls without a call-budget in this simula-
tion is nine).

4. Implementation
DitTorrent’s implementation comprises the following
three components: DitTorrent Daemon, Browser
plug-in, and the DitTorrent Tracker.

1. The DitTorrent Daemon is written in python
2.4 and is an extension of Bram Cohen’s
BitTorrent version 4.4.0. The Daemon in-
cludes the additional capability to make
point-to-point telephone calls using PPP con-
nections for data transfer.

2. The Browser plug-in is a plug-in for Firefox
(xpi ªle) that detects and passes links .torrent
ªles to the DitTorrent Daemon. The Daemon
component also provides the URLs of the
Web pages for prefetching to the pre-
fetching proxy. The prefetching proxy in our

44 Information Technologies and International Development

A PEER-TO-PEER INTERNET FOR THE DEVELOPING WORLD

Figure 13. Comparison of DitTorrent’s ofºine block-discovery with
BitTorrent “perfect knowledge” about block locations.



implementation extends the open source
wwwofºe (wwwofºe, 2003) proxy, spe-
ciªcally designed as a dialup ofºine proxy
server.

3. The DitTorrent Tracker is written in C�� as
an extension to the open source BNBT
tracker (BNBT, 2004). Our extension to the
BNBT tracker includes time-window-based
lookups, using efªcient interval-trees, as well
as compliance with additional parameters in-
troduced to enable point-to-point dialup con-
nections.

The source code of our implementation is available
at DitTorrent (2007). The distribution at sourceforge
also includes the DitTorrent simulator described in
the paper.

5. Conclusion and Future Work
In the current age of broadband networks, dialup
networking is mostly a forgotten technology. Per-
haps the most relevant technologies for our system
date back to the pre-Internet days, including
FidoNET (Jennings, 1984), UUCP (Kolstad, 1984) and
USENET (USENET, 1980). However, our use of an in-
centive-driven P2P data exchange mechanism makes
our architecture fundamentally different from such
systems. Importantly, unlike pre-Internet systems
that relied solely on dialup connections for moving
content between computers, our goal is to acceler-
ate access to large content on the Internet by utiliz-
ing a dialup connection at the maximum bandwidth

supported by the modem. In our
model, content still “resides” on
the Internet, but may be down-
loaded using a P2P dialup con-
nection to reduce download time.
Our system combines a number
of architectural components, such
as P2P data transfer, intelligent
connection interleaving, and con-
tent-prefetching to make a practi-
cal system.

Currently, our system lacks
comprehensive security architec-
ture. We are currently working on
rendezvous servers much in the
same vein as the recently intro-
duced Google click-to-call service
that hides the identities of the

peers connected on a dialup.
While this paper is focused on using POTS mo-

dem-to-modem dialup connections to circumvent
extremely low bandwidth Internet connections, we
intend to explore high-bandwidth intra-country de-
ployments of Wireless Local Loop (WLL) and WiMAX
as well. Our proposed architecture, at an abstract
level, provides a mechanism for multiplexing the
scarce and expensive international Internet band-
width over higher bandwidth peer-to-peer connec-
tions within a developing country.

6. Summary and Discussion
In this article, we describe and evaluate an architec-
ture for an accelerating Internet access in the devel-
oping-world.

Users in the developing world often face a pau-
city of Internet bandwidth due to three reasons: (1)
expensive Internet bandwidth, (2) interplay and poli-
tics of ISPs, and (3) poor network planning for “pre-
paid” dialup customers.

As a result, the Internet is rarely used for access-
ing exchanging or disseminating large data. Most
people in the developing world use the Internet pri-
marily for low-bandwidth browsing, chatting, or tex-
tual email. Applications that require high bandwidth
access to the Internet are rarely used.

We propose an architecture that circumvents the
Internet bottleneck in the developing world. Our ar-
chitecture is derived from the observation that, in
the developing world, the bottleneck in Internet

Volume 5, Number 1, Spring 2009 45

SAIF, CHUDHARY, BUTT, BUTT, MURTAZA

Figure 14. Analysis of budget-based download.



bandwidth is not the “last mile.” The dialup last
mile and the user’s dialup Internet modem can sup-
port up to 64 kb/sec. However, the bottleneck is the
ISP that rate limits the user in the face of limited up-
stream bandwidth.

Our architecture essentially permits users in the
developing world to “share” or multiplex their
Internet bandwidth by sharing downloaded content
over peer-to-peer dialup connections. The idea is re-
ally simple: use the Internet for downloading con-
tent only once and share the content by directly
connecting with other machines in the region to by-
pass the ISP bottleneck. Using our peer-to-peer ar-
chitecture, a user’s computer can automatically
discover other computers in its local region that
have a (full or partial) copy of the desired Internet
content and download the ªle at the maximum
speed supported by a modem, which is typically
twice as much as the speed afforded by an ISP (40–
50kb/sec.). The P2P nature of the system is derived
from the hugely popular BitTorrent system, enabling
a ªle to be broken up in pieces such that the overall
operation is distributed and computers can down-
load a ªle piece by piece from different peers. The
P2P underpinnings of our architecture are based on
a data exchange scheme that is incentive driven,
and hence, sustainable, in which a callee permits a
caller to download a chunk of a ªle only if the caller
can furnish a chunk that is of interest to the callee.

However, the practicality of this peer-to-peer na-
ture of our scheme depends on a sizeable number
of peers (20–100) wishing to download a ªle at the
same time. While this assumption is largely valid for
most P2P ªle exchange systems, the performance of
our system may be adversely affected if the user-
base in a region has very diverse interests.

The system is designed to be compatible with
BitTorrent, and the interleaving of the Internet and
P2P connections is designed to be imperceptible to a
Web surfer. The aim of the overall architecture is to
make large data transfer faster, over our P2P archi-
tecture, without causing visible disruption to a user
surªng the Web.

Our proposed system represents one design point
in the spectrum of architectures for accessing the
Internet via non-traditional channels. In particular, it
enables users in the developing world to leverage
intra-country high-bandwidth communication chan-
nels to speed up access over the high-cost interna-
tional Internet links.

To achieve this, our system takes content from
the Internet and makes it accessible over a P2P
(ofºine) network. The ofºine behavior of the system
is both reminiscent of pre-Internet networks such as
FidoNet and modern-delay tolerant networks (Jain,
2004). However, where delay-tolerant-networks
(DTN) are focused on protocols and architectures for
transport of data between computers connected by
“sneaker networks” (Jain, 2004), the focus of our
work is to provide access to data on the Web, not
between disconnected computers. We also rely on
real-time dialup connections between computers,
with the aim to reduce the time needed to down-
load data from the Web. In comparison, DTN archi-
tectures focus on reliable transfer of data over slow,
unreliable channels, with performance being a ter-
tiary issue.

Our architecture may be used as the underlying
“plumbing” for data-intensive applications, such as
digital library systems, and learning management
systems such as Sakai and Moodle. In our system,
the remote reference material may be downloaded
only once, while other users behind slow dialup
connections can share the content over modem-
speed connections without having to use a rate-
limited ISP connection. ■

Acknowledgments
The work presented in this paper was, in part,
funded by the Microsoft Research (MSR) Digital In-
clusion Grant, 2006.

References
Bharambe, A. R., Herley, C., & Padmanabhan, V. N.

(2006). Analyzing and Improving a BitTorrent
Network’s Performance Mechanisms. In IEEE
Conference on Computer Communications
(INFOCOM). Barcelona, Spain.

Bharambe, A., Herley, C., & Padmanabhan, V. N.
Microsoft Research Simulator for the BitTorrent
Protocol. Retrieved from http://www.re-
search.microsoft.com/projects/btsim

BNBT. Retrieved from http://bnbt.depthstrike.com/

Cohen, B. (2003). Incentives Build Robustness in
BitTorrent. In Workshop on Economics of Peer-to-
Peer Systems. Berkeley, CA.

46 Information Technologies and International Development

A PEER-TO-PEER INTERNET FOR THE DEVELOPING WORLD



The Digital Divide at a Glance. World Summit on the
Information Society, Tunis 2005.

Ganesh, A. J., Kermarrec, A. M., & Massoulie, L.
(2003). Peer-to-peer membership management
for gossip-based protocols. In IEEE Transactions
on Computers. 52(2): 139–149.

Hu, J., Zeng, H., Li, H., Niu, C., & Chen, Z. (2007).
Demographic prediction based on user’s brows-
ing behavior. 16th International World Wide Web
Conference, 151–160. New York.

Jain, S., Fall, K., & Patra, R. (2004). Routing in a De-
lay Tolerant Network. In Proceedings of ACM
SIGCOMM. Portland, OR, USA.

Jennings, T. FidoNet. Retrieved from http://
en.wikipedia.org/wiki/FidoNet

Kolstad, R., & Summers-Horton, K. (1984). UUCP.
Retrieved from http://en.wikipedia.org/wiki/
UUCP/

Pouwelse, J. A., Garbacki, P., Epema, D. H. J., &
Sips, H. J. (2004, April). A Measurement Study of
the BitTorrent Peer-to-Peer File-Sharing System.
Technical Report PDS-2004-003. Delft University
of Technology, The Netherlands.

Qiu, D., & Srikant, R. (2004, September). Modeling

and Performance Analysis of BitTorrent-like Peer-
to-Peer Networks. In Proceedings of ACM
SIGCOMM. Portland, OR, USA.

Saif, U., Chudhary, A. L., Butt, S., & Butt, N. F.
(2007a, October). DitTorrent. Retrieved from
http://dittorrent.sourceforge.net/

Saif, U., Chudhary, A. L., Butt, S., & Butt, N. F.
(2007b, October). Poor Man’s Broadband: Peer-
to-Peer Dialup Networking. In ACM SIGCOMM
CCR, vol. 37, no. 5.

Saroiu, S., Gummadi, P. K., & Gribble, S. D. (2002).
A Measurement Study of Peer-to-Peer File
Sharing Systems. In Multimedia Computing and
Networking (MMCN). San Jose, CA, USA.

Tolia, N., Kaminsky, M., Andersen, D. G., & Patil, S.
(2006, May). An Architecture for Internet Data
Transfer. Proc. 3rd Symposium on Networked Sys-
tems Design and Implementation (NSDI). San
Jose, CA.

Usenet. Retrieved from http://en.wikipedia.org/wiki/
Usenet/

WWWOFFLE. (2006). Retrieved from http://
www.gedanken.demon.co.uk/wwwofºe/

Volume 5, Number 1, Spring 2009 47

SAIF, CHUDHARY, BUTT, BUTT, MURTAZA






